TAMAN HIDROPONIK AEROPONIK RUMAH KACA RUMAH KACA PERTANIAN RUMAH KACA Model 3D

- Minta dukungan produk oleh penulis
- Format yang tersedia:
- ID Barang:607975
- Tanggal: 2025-10-28
- Poligon:533434
- Sudut:459191
- Animasi:No
- Bertekstur:No
- Dimanipulasi:No
- Material:
- Low-poly:No
- Koleksi:No
- Pemetaan UVW:No
- Plugin Digunakan:No
- Siap Cetak:No
- Pindai 3D:No
- Konten Dewasa:No
- PBR:No
- AI Pelatihan:No
- Geometri:Poly NURBS
- Unwrapped UVs:Unknown
- Tampilan:165
Deskripsi
High-quality 3D assets at affordable prices — trusted by designers, engineers, and creators worldwide. Made with care to be versatile, accessible, and ready for your pipeline.
Included File Formats
This model is provided in 14 widely supported formats, ensuring maximum compatibility:
• - FBX (.fbx) – Standard format for most 3D software and pipelines
• - OBJ + MTL (.obj, .mtl) – Wavefront format, widely used and compatible
• - STL (.stl) – Exported mesh geometry; may be suitable for 3D printing with adjustments
• - STEP (.step, .stp) – CAD format using NURBS surfaces
• - IGES (.iges, .igs) – Common format for CAD/CAM and engineering workflows (NURBS)
• - SAT (.sat) – ACIS solid model format (NURBS)
• - DAE (.dae) – Collada format for 3D applications and animations
• - glTF (.glb) – Modern, lightweight format for web, AR, and real-time engines
• - 3DS (.3ds) – Legacy format with broad software support
• - 3ds Max (.max) – Provided for 3ds Max users
• - Blender (.blend) – Provided for Blender users
• - SketchUp (.skp) – Compatible with all SketchUp versions
• - AutoCAD (.dwg) – Suitable for technical and architectural workflows
• - Rhino (.3dm) – Provided for Rhino users
Model Info
• - All files are checked and tested for integrity and correct content
• - Geometry uses real-world scale; model resolution varies depending on the product (high or low poly)
• • - Scene setup and mesh structure may vary depending on model complexity
• - Rendered using Luxion KeyShot
• - Affordable price with professional detailing
Buy with confidence. Quality and compatibility guaranteed.
If you have any questions about the file formats, feel free to send us a message — we're happy to assist you!
Sincerely,
SURF3D
Trusted source for professional and affordable 3D models.
More Information About 3D Model :
**GARDEN HYDROPONIC AEROPONIC GREENHOUSE HOTHOUSE GLASSHOUSE FARM**
The title describes an integrated system within Controlled Environment Agriculture (CEA), characterized by the combination of protective physical structures (Greenhouse, Glasshouse, Hothouse) and advanced soil-less cultivation technologies (Hydroponics, Aeroponics) applied across various scales (Garden to Commercial Farm). This synergy is designed to optimize plant growth parameters, maximize resource efficiency, and facilitate year-round production irrespective of external climatic conditions.
### I. Controlled Environment Structures
The cultivation takes place within transparent protective enclosures, which serve as the primary mechanism for environmental control:
1. **Greenhouse/Glasshouse:** These terms often refer interchangeably to structures utilizing glass or durable plastic sheeting (polycarbonate, polyethylene) to enclose an environment. The structure harnesses the greenhouse effect, capturing solar energy to maintain elevated internal temperatures. Sophisticated installations employ active heating, cooling (evaporative or mechanical), dehumidification, and automated venting systems to modulate temperature, humidity, and air circulation. The modern Glasshouse typically implies a higher degree of structural sophistication and the use of glass, often preferred for maximum light transmission and durability in large-scale commercial operations.
2. **Hothouse:** Functionally, a Hothouse is a Greenhouse engineered to maintain significantly higher temperatures and humidity levels, often simulating tropical or sub-tropical climates unsuitable for the local environment. This requires substantial active heating input and dedicated climate regulation equipment, differentiating it from a standard Greenhouse used for temperate crop extension.
These structures mitigate external risks (pests, disease, extreme weather) and allow for the precise management of critical inputs, including light intensity (often supplemented by LED or high-pressure sodium lamps), carbon dioxide enrichment, and vapor pressure deficit (VPD).
### II. Soil-Less Cultivation Technologies
Within the controlled structure, crops are grown without traditional soil media, relying instead on precise nutrient delivery:
1. **Hydroponics:** This technique involves growing plants with their roots directly immersed in, or frequently exposed to, a mineral-rich aqueous solution. Various systems exist, including Deep Water Culture (DWC), Nutrient Film Technique (NFT), and various drip or recirculating systems utilizing inert substrates (e.g., coco coir, rockwool). Hydroponic systems dramatically reduce water usage compared to field agriculture and allow for exact control over nutrient composition and pH, leading to highly consistent growth cycles.
2. **Aeroponics:** Representing the most advanced form of soil-less culture, aeroponics suspends plant roots in air within an enclosed chamber. A fine mist or aerosol of nutrient solution is periodically delivered to the roots. The primary advantage of aeroponics is the maximal oxygenation of the root zone, which can accelerate nutrient uptake and subsequent biomass production, often resulting in faster growth rates and higher yields compared to traditional hydroponics.
### III. Operational Context (Garden and Farm)
The application scales from intensive domestic or research **Garden** settings, where precision and educational utility are paramount, to industrial **Farm** installations (often categorized as Agribusiness or technologically focused CEA centers). At the farm scale, automated systems manage the entire cultivation lifecycle, including seeding, transplantation, nutrient formulation, environmental monitoring, pest management, and harvesting. This integration yields superior control over crop consistency and output prediction, making the combined system a pivotal element in addressing challenges related to food security, urban agriculture, and resource conservation.
KEYWORDS: Controlled Environment Agriculture, Hydroponics, Aeroponics, Greenhouse, Glasshouse, Hothouse, Precision Agriculture, Soil-less Culture, Vertical Farming, Nutrient Film Technique, Deep Water Culture, Climate Control, Automation, Recirculation System, Resource Efficiency, Food Security, Urban Farming, Crop Optimization, Horticulture, Agribusiness, Root Zone Oxygenation, Nutrient Solution, Misting System, Environmental Monitoring, Yield Maximization, Supplemental Lighting, Substrate Culture, High-Tech Greenhouse, Integrated Pest Management, Water Conservation.
Perlu lebih banyak format?
Jika Anda membutuhkan format yang berbeda, silakan buka Tiket Dukungan baru dan minta itu. Kita dapat mengonversi model 3D menjadi: .stl, .c4d, .obj, .fbx, .ma/.mb, .3ds, .3dm, .dxf/.dwg, .max. .blend, .skp, .glb. Konversi Format GratisKami tidak mengonversi adegan 3d dan format seperti .step, .iges, .stp, .sldprt.!
Informasi Penggunaan
TAMAN HIDROPONIK AEROPONIK RUMAH KACA RUMAH KACA PERTANIAN RUMAH KACA - Anda dapat menggunakan model 3D bebas royalti ini untuk keperluan pribadi dan komersial sesuai dengan Lisensi Dasar atau Diperpanjang.Lisensi Dasar mencakup sebagian besar kasus penggunaan standar, termasuk iklan digital, proyek desain dan visualisasi, akun media sosial bisnis, aplikasi asli, aplikasi web, permainan video, dan produk akhir fisik atau digital (baik gratis maupun berbayar).
Lisensi Diperpanjang mencakup semua hak yang diberikan berdasarkan Lisensi Dasar, tanpa batasan penggunaan, dan memungkinkan model 3D untuk digunakan dalam proyek komersial tanpa batas dengan ketentuan Bebas Royalti.
Baca lebih lanjut
English
Español
Deutsch
日本語
Polska
Français
中國
한국의
Українська
Italiano
Nederlands
Türkçe
Português
Bahasa Indonesia
Русский
हिंदी



















